Skip to main content

12 posts tagged with "robotics"

View All Tags

Distributed Storage in Mobile Robotics

· 6 min read
Anthony Cavin
Data Scientist - ML/AI, Python, TypeScript

Distributed Storage in Mobile Robotics

Mobile robots produce a lot of data (camera images, IMU readings, logs, etc). Storing this data reliably on each robot and syncing it to the cloud can be hard. ReductStore makes this easier: it's a lightweight, time-series object store built for robotics and industrial IoT. It stores binary blobs (images, logs, CSV sensor data, MCAP, JSON) with timestamps and labels so you can quickly find and query them later.

This introduction guide explains a simple setup where each robot stores data locally and automatically syncs it to a cloud ReductStore instance backed by Amazon S3.

The Missing Database for Robotics Is Out

· 7 min read
Anthony Cavin
Data Scientist - ML/AI, Python, TypeScript

Img example

Robotics teams today wrestle with data that grows faster than their infrastructure. Every robot generates streams of images, sensor readings, logs, and events in different formats. These data piles are fragmented, expensive to move, and slow to analyze. Teams often rely on generic cloud tools that are not built for robotics. They charge way too much per gigabyte (when it should cost little per terabyte), hide the raw data behind proprietary APIs, and make it hard for robots (and developers) to access or use their own data.

ReductStore introduces a new category: a database purpose built for robotics data pipelines. It is open, efficient, and developer friendly. It lets teams store, query, and manage any time series of unstructured data directly from robots to the cloud.

Comparing Robotics Visualization Tools: RViz, Foxglove, Rerun

· 24 min read
Ekaterina Marova
Data Scientist - ML, Python

Intro image

In robotics development, effective visualization and analysis tools are essential for monitoring, debugging, and interpreting complex sensor data. Platforms like RViz, Foxglove, and Rerun play a key role at the visualization layer of the observability stack. They help developers interact with both live and recorded data. These tools rely on timely, well-structured access to the underlying data streams. That's where ReductStore comes in. It handles the data logging, storage, and processing, with a focus on capturing high-volume time-series data efficiently. ReductStore aims to integrate with tools like RViz, Foxglove, and Rerun, supporting a complete observability pipeline: from raw data ingestion to actionable insights.